Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mil Med ; 188(Suppl 6): 575-583, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37948264

RESUMO

INTRODUCTION: Around 21.6-35% of military personnel are smokers, while 12.26% of them have been regularly exposed to second-hand smoke (SHS). Second-hand smoke is considered an important risk factor for neurological diseases because it can induce oxidative stress, DNA damage, and disrupt DNA repair pathways. MATERIAL AND METHODS: The brain of air (sham) or SHS exposed mice was cryoperserved, sectioned, and placed on a glass slide before immunoprobing them with antibodies to observe for oxidative DNA damage (8-oxoG), oxidative DNA repair (8-oxoguanine DNA glycosylase 1, Ogg1; apurinic/apyrimidinic endonuclease, Ape1), and inflammatory (glial fibrillary acidic protein) proteins. RESULTS: Nissl staining of the prefrontal cortex (PFCTX) revealed the presence of dark, shrunken cells, hippocampal thinning, and the presence of activated astrocytes in SHS exposed mice. 8-oxoG staining was also more prominent in the PFCTX and hippocampus (HIPP) of SHS exposed mice. Ogg1 staining was reduced in the PFCTX and CA3 hippocampal neurons of SHS exposed mice, whereas it was more prominent in CA1 and CA4 hippocampal neurons. In contrast, Ape1 staining was more prominent in the PFCTX and the HIPP of SHS exposed mice. CONCLUSIONS: These studies demonstrate that oxidative DNA damage (8-oxoG) was elevated and oxidative DNA repair (Ape1 and Ogg1) was altered in the brain of SHS exposed mice. In addition, activated astrocytes (i.e., glial fibrillary acidic protein) were also observed in the brain of SHS exposed mice. Therefore, SHS induces both oxidative DNA damage and repair as well as inflammation as possible underlying mechanism(s) of the cognitive decline and metabolic changes that were observed in chronically exposed mice. A better understanding of how chronic exposure to SHS induces cognitive dysfunction among military personnel could help improve the combat readiness of U.S. soldiers as well as reduce the financial burden on the DOD and veterans' families.


Assuntos
Doenças do Sistema Nervoso , Poluição por Fumaça de Tabaco , Humanos , Camundongos , Animais , Poluição por Fumaça de Tabaco/efeitos adversos , Proteína Glial Fibrilar Ácida , Reparo do DNA , Estresse Oxidativo/genética , Dano ao DNA
2.
Genes (Basel) ; 14(9)2023 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-37761842

RESUMO

Exposure to second-hand Smoke (SHS) remains prevalent. The underlying mechanisms of how SHS affects the brain require elucidation. We tested the hypothesis that SHS inhalation drives changes in the gut microbiome, impacting behavioral and cognitive performance as well as neuropathology in two-month-old wild-type (WT) mice and mice expressing wild-type human tau, a genetic model pertinent to Alzheimer's disease mice, following chronic SHS exposure (10 months to ~30 mg/m3). SHS exposure impacted the composition of the gut microbiome as well as the biodiversity and evenness of the gut microbiome in a sex-dependent fashion. This variation in the composition and biodiversity of the gut microbiome is also associated with several measures of cognitive performance. These results support the hypothesis that the gut microbiome contributes to the effect of SHS exposure on cognition. The percentage of 8-OHdG-labeled cells in the CA1 region of the hippocampus was also associated with performance in the novel object recognition test, consistent with urine and serum levels of 8-OHdG serving as a biomarker of cognitive performance in humans. We also assessed the effects of SHS on the percentage of p21-labeled cells, an early cellular marker of senescence that is upregulated in bronchial cells after exposure to cigarette smoke. Nuclear staining of p21-labeled cells was more prominent in larger cells of the prefrontal cortex and CA1 hippocampal neurons of SHS-exposed mice than in sham-exposed mice, and there was a significantly greater percentage of labelled cells in the prefrontal cortex and CA1 region of the hippocampus of SHS than air-exposed mice, suggesting that exposure to SHS may result in accelerated brain aging through oxidative-stress-induced injury.


Assuntos
Microbioma Gastrointestinal , Produtos do Tabaco , Poluição por Fumaça de Tabaco , Humanos , Animais , Camundongos , Lactente , Poluição por Fumaça de Tabaco/efeitos adversos , Estresse Oxidativo , Cognição , Dano ao DNA
3.
J Neurosci ; 42(24): 4867-4878, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35552233

RESUMO

The predisposition to engage in autonomous habitual behaviors has been associated with behavioral disorders, such as obsessive-compulsive disorder and addiction. Attentional set-shifting tasks (ASSTs), which incorporate changes governing the association of discriminative stimuli with contingent reinforcement, are commonly used to measure underlying processes of cognitive/behavioral flexibility. The purpose of this study was to identify primate brain networks that mediate trait-like deficits in ASST performance using resting-state fMRI. A self-pacing ASST was administered to three cohorts of rhesus monkeys (total n = 35, 18 female). Increased performance over 30 consecutive sessions segregated the monkeys into two populations, termed High Performers (HP, n = 17) and Low Performers (LP, n = 17), with one anomaly. Compared with LPs, HPs had higher rates of improving performance over sessions and completed the 8 sets/sessions with fewer errors. LP monkeys, on the other hand, spent most of each session in the first set and often did not acquire the first reversal. A whole-brain independent components analysis of resting-state fMRI under isoflurane identified four strong networks. Of these, a dual regression analysis revealed that a designated "executive control network," differed between HPs and LPs. Specific areas of connectivity in the rhesus executive control network, including frontal cortices (ventrolateral, ventromedial, and orbital) and the dorsal striatum (caudate, putamen) correlated with perseverative errors and response latency. Overall, the results identify trait-like characteristics of behavioral flexibility that are associated with correlated brain activity involving specific nuclei of frontostriatal networks.SIGNIFICANCE STATEMENT Resting state functional connectivity MRI in rhesus monkeys identified specific nuclei in frontostriatal circuitry that were associated with population differences in perseverative and impulsive aspects of cognitive flexibility.


Assuntos
Mapeamento Encefálico , Lipopolissacarídeos , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feminino , Macaca mulatta , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...